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Summary

A rigorous analysis is presented for
the propagation in a doubly periodic
structure. General wave characteristics
are established and various types of wave
interaction are identified. Numerical
examples are shown to illustrate new
interesting physical phenonena.

Introduction

In this paper, we present a rigorous
analysis of a class of doubly periodic
structures which are composed of uniform
dielectric layers and singly periodic

layers of two different periods. Such a

type of structures have been suggested for
realizing the coupling of three modes for
enhancing the Bragg reflection for the
design of filters. However, the guiding
characteristics of doubly periodic
structures have been analyzed only

approximately by perturbation methods

[1,2]. While approximate methods are

desirable for constructing simple

analytical results that are useful for
practical design considerations, they

often require a priori knowledge of the
basic physical processes involved. So
far, the physical picture of wave

phenomena in multiply periodic structures
has not been well developed, and a better
understanding of basic wave processes

involved is needed for establishing a

sound basis on which desired simple

approximations can be properly developed.
We have observed that with grating of
rectangular profile, the class of

multilayer structures can be formulated
exactly as an electromagnetic

boundary-value problem. The purposes of

such an exact analysis are threefold:

(1) TO provide a basis for the

understanding of global characteristics

of wave propagation in a doubly periodic
structure .

(2) To identify various types of wave
interaction that may exist in doubly

periodic structures, but not in singly
periodic ones.

(3) To give accurate numerical data
against which approximate results can be
judged . In adition, our approach is to
obtain accurate numerical results for
doubly periodic structures (IIPS), and
compare them to those of well known singly
periodic structures (SPS), thereby clearly
identifying the unique properties of DPS.

Boundary-Value Problem of DPS

Consider a dielectric layer that is
periodically corrugated on both boundary
surfaces with two different periods, as
shown in Fig.1. Both periodic layers can
be regarded as dielectric gratings
consisting of uniform rectangular rods
placed periodically in the x direction.
The period and thickness of the upper
grating (grating A) are a and t , and
those of the lower grating (grating%) are
b and tb, respectively. The corrugated
structure has a dielectric constant and

the central portion, which can be tak$n as
a uniform layer (film), has a thickness

‘f”
Such a corrugated structure is

generally sandwiched between two half-

space dielectic media. For simplicity,
the upper and lower half-spaces will be
referred to as the air and substrate
regions, and their dielectric constants
are denoted by and respectively.
Although Fig.1 sh$ws the ‘s’pecial case of
rectangular corrugations of the dielectric
film, the theory to be presented below
holds for dielectric gratings of arbitrary
profile, as shown for the case of SPS
[3,41.

The structure under consideration

contains two physically separated gratings
of different periods. Furthermore, the
guiding of waves along the DPS may be
viewed as a process of multiple

reflections by the two gratings. The
reflection matrix of a single grating
sandwiched between two uniform half spaces
of different dielectric constants had been
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previously defined [3-5] . Using the
reflection matrix of a grating as a
building block, an exact formulation of
the boundary-value problem of DPS had been
carried out . Both analytical and
numerical results had obtained on the
basis of the exact formulation, as
described below.

General Guiding Characteristics of DPS

By the exact formulation, we have
defined a dispersion relation for the
class of DPS under consideration. Some
general properties of the dispersion ro~ts
are then obtained, thereby establishing
the global guiding characteristics of the
Bri.llouin diagram. We summarize here
these general properties along with their
implications to the design of DPS for
applications as either filters or
antennas .

A. Commensurate and noncommensurate
periods

So far, the two periods of the DPS are
assumed to be arbitrary; their ratio can
be a rational or irrational number and the
theory described above holds for both
cases. However, it should be noted that
in a numerical analysis using a computer,
an irrational number is always
approximated by a rational one with a
finite number of digits. Therefore, we
can obtain numerical results only for DPS
of commensurate periods.

In the commensurate case, the ratio of
the periods can be expressed in the
general form:

m

:=i (1)

where M and N are two integers without any
common factor. It then follows from the
last equation that the least common
multiple of a and b is

d = Na = Mb (2)

which means physically that a DPS with
commensurate periods can be regarded as a
SPS with the period d, as determined by
(1) and (2). In other words, a DPS with
commensurate periods must exhibit the
propagation characteristics of SPS, which
are considered to be well understood [6] .

On the other hand, in the
noncommensurate case, the ratio of the two
periods is an irrational number, which
contains an infinite number of digits. In
View of (l), a DPS of noncommensurate
periods can be taken as a limiting case of
commensurate ones, with the integers M and
N approaching infinity. Thus , the period

d in (2) then becomes infinite. A physical
consequence of such a limiting process is
that as the number of digits is increased
indefinitely, the bound wave-wave region
(O<k < lT/d) is continually reduced to
zero. 0 Thus, a DPS of noncommensurate
periods is always leaky as a waveguide, at
least, in principle. The magnitude of the
leakage depends also on other structure
parameters, and it has to be determined by
the eigenvalue of the boundary-value
problem formulated in the preceding
section. It should be pointed out that
the introduction of the second grating
into the waveguide was originally intended
for enhancing the Bragg reflection in the
bound-wave region for the filter design
[1,2]. In view of the reduced bound-wave
reg ion, the design of DPS for filter
applications may be frustrated by the
leakage of energy which may degrade the
performance of the device. Furthermore ,
the reduction of the bound-wave region may
be interpretted to be due to the radiation
of multiple harmonics. Such multiple-beam
radiations may have far-reaching
implications for the design of antennas.

B. General characteristics of dispersion
root

From. the exact dispersion relation, we
have proved mathematically the following
three properties concerning the dispersion
roots of DPS:

(Dl) If k is a dispersion root, so is
Xoo

-k
Xoo”

(D2) If k is a dispersion root, so is
Xoo

k for any integers p and q.
xPq’

(D3) If k
Xoo

= pie/a + qn/b -j& is a
*

dispersion root, so are kxoo, kxr-p,_q,

and k*
X,-p,-q”

The first property (Dl) states that the
guidiance of waves along the structure is
reversiver even though the structure may
not possess a reflection symmetry in the
x-direction. Such a property should have
been expected, because the structure is
reciprocal . The second property (D2)
states the dispersion roots possess the
translation symmetry with the periods of
the gratings, even though the structure
itself does not. The last property (D3)
states that under the phase matching
condition, the space harmonics exist in
pair. Such a property will be very
important to the determination of the
possible types of mode coupling in a DPS,
as we shall show next.

132



Numerical Results

For the structure shown in Fig.1 and
with the period a of grating A as a unit,
we choose the following set of parameters:
b=l.la, for the period of grating B;
t =t =0.4a,

P
for the thicknesses of

g$at ngs A and B; tf=l.8a, for the
thickness of the film. In addition, the
refractive indices of the materials are
chosen to be: na=n~=l.O and n =1.9. For
such a structure, we have exfamined the
propagation characteristics in general,
but focus our attention on the stopband
regions which are of primary interest for
filter designs.

For the design of DPS, it is desirable
to determine first the unperturbed
dispersion curves by considering a uniform
dielectric waveguide as an approximation
for the DPS . Herer we take the
average-thickness approximation by
replacing each of the two periodic layers
by a uniform one with a half of the
original thicknesses. The dispersin
curves of the lowest two TE modes are
shown in Fig.2r with the labels (1,0,0)
and (2,0,0). Each ~ne of these is
regarded as the fundamental harmonic of
the mode. In the presence of grating A,
other harmonics with a phase shift of a
multiple of 2K/a are excited; the

dispersion curves for the m.-l space
harmonics for the two lowest modes are
shown with the labels (1,-1,0) and
(2,-1,0). Similarly, the dispersion
curves for n=-1 space harmonics due to
grating B are shifted by 2~/b and are
labelled by (1,0,-1) and (2,0,-1). Among
the three integers in each labelling, the
first is the mode index, the second and
the third are the harmonic indices due to
gratings A and B, respectively. It is

well known from the theory of mode

coupling that the dispersion curves of a
perturbed structure will follow closely

those of the unperturbed one, except in
the vicinity of their intersection points.
Near the intersection points, the space

harmonics are strongly coupled, resulting
in complex dispersion roots that represent
decaying waves due to total reflections,
known as the Bragg Phenomenon.

It is noted that the structure
parameters for the present analysis were
chosen on the basis of these unperturbed
dispersion curves. They were chosen such
that the intersection of three unperturbed
dispersion curves at the same point can
occur, as shown in the boxed area marked

by A in Fig.2. This means that in the

case of DPS, three-mode coupling, which

cannot be achieved by singly periodic

structures, can now be realized. The

three-mode coupling mechanism had been

suggested as a mean for the enhancement of

mode coupling [1,2] . We have carefully
investigated this potential three–mode
coupling case, and the detailed stopband
structures are shown as insets in Fig.2.
In Inset 1, we examine the two limiting
cases, t =0 and tb=O, corresponding to two
SPS wher~ only two-mode couplings can take
place. As shown, we have two usual
stopbands for the two limiting cases .
Inset 2 shows the stopbands of the DPS.
Evidently, in the presence of the two
gratings, all the modes are strongly
coupled, so that the two stopbands occur
at the same phase constant, as expected.
Comparing the two insets, we observe that,
contrary to expectation, one stopband is
reduced in the case of the DPS, while the
other stay practically unchanged. More
importantly, in the case of DPS, there
exists in the region of overlap between
the two stopbands. Since complex roots
must occur in pairs, this means that there
exist four roots, with one extra or
unexpected root, for the anticipated
three-mode coupling case . We have
examined the overall space harmonics on
the basis of the mathematical properties
stated in the preceding section. For the
present case, it is actually an
interaction of four modes , which are
automatically accounted for in our exact
dispersion relation. More numerical data
have been obtained, showing many
intersecting physical phenomena. Their
implications to the design of DPS for
applications as filters or antennas will
be systematically illustrated in the
presentation.
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Fig. 2. Dispersion curves of doubly

periodic structure

Fig. 1. Configuration of doubly periodic

structure
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